VIDENSKABEN BAG

Betydningen af genpanelers størrelse i dianostik af børn med epilepsi.

21/01/2021

 

Amplexa Genetics har i samarbejde med tre tyske laboratorier; Center of Human Genetics and Laboratory Diagnostics, CEGAT og Medical Genetics Center, fået godkendt og publiceret artiklen ”Next Generation Sequencing in Pediatric Epilepsy Using Customized Panels: Size Matters”.

 

I denne artikel er sammenhængen mellem størrelsen af genpaneler og det diagnostiske udbytte, for børn med epilepsi, undersøgt. De to størrelser af genpaneler, som er anvendt i denne undersøgelse, er henholdsvis <25 kb og >25 kb. Next Generation Sequencing (NGS) kan anvendes til at identificere monogenetiske epilepsi syndromer.

 

Denne retrospektive kohortestudie har via NGS samlet data fra 190 patienter, der var diagnosticeret med epilepsi af ukendt etiologi.

 

Undersøgelen indikerer, at større genpaneler, sammenlignet med mindre paneler, viser et signifikant højere diagnostisk udbytte, specielt hos non-developmental and epileptic encephalopathy (non-DEE) patienter.

 

Find publikationen her: https://pubmed.ncbi.nlm.nih.gov/33086385/

Incorporating Epilepsy genetics into clinical practice: A 360° evaluation.

We evaluated a new epilepsy genetic diagnostic and counseling service covering a UK population of 3.5 million. We calculated diagnostic yield, estimated clinical impact, and surveyed referring clinicians and families. We costed alternative investigational pathways for neonatal onset epilepsy. Patients with epilepsy of unknown aetiology onset < 2 years; treatment resistant epilepsy; or familial epilepsy were referred for counseling and testing. We developed NGS panels, performing clinical interpretation with a multidisciplinary team. We held an educational workshop for paediatricians and nurses. We sent questionnaires to referring paediatricians and families. We analysed investigation costs for 16 neonatal epilepsy patients. Of 96 patients, a genetic diagnosis was made in 34% of patients with seizure onset < 2 years, and 4% > 2 years, with turnaround time of 21 days. Pathogenic variants were seen in SCN8A, SCN2A, SCN1A, KCNQ2, HNRNPU, GRIN2A, SYNGAP1, STXBP1, STX1B, CDKL5, CHRNA4, PCDH19 and PIGT. Clinician prediction was poor. Clinicians and families rated the service highly. In neonates, the cost of investigations could be reduced from £9362 to £2838 by performing gene panel earlier and the median diagnostic delay of 3.43 years reduced to 21 days. Panel testing for epilepsy has a high yield among children with onset < 2 years, and an appreciable clinical and financial impact. Parallel gene testing supersedes single gene testing in most early onset cases that do not show a clear genotype-phenotype correlation. Clinical interpretation of laboratory results, and in-depth discussion of implications for patients and their families, necessitate multidisciplinary input and skilled genetic counseling.

 

Find the publication here: https://pubmed.ncbi.nlm.nih.gov/29760947/

Impact on Clinical Decision Making of Next-Generation Sequencing in Pediatric Epilepsy in a Tertiary Epilepsy Referral Center

 

Next-generation sequencing (NGS) describes new powerful techniques of nucleic acid analysis, which allow not only disease gene identification diagnostics but also applications for transcriptome/methylation analysis and meta-genomics. NGS helps identify many monogenic epilepsy syndromes. Pediatric epilepsy patients can be tested using NGS epilepsy panels to diagnose them, thereby influencing treatment choices. The primary objective of this study was to evaluate the impact of genetic testing on clinical decision making in pediatric epilepsy patients. Methods. We completed a single-center retrospective cohort study of 91 patients (43 male) aged 19 years or less undergoing NGS with epilepsy panels differing in size ranging from 5 to 434 genes from October 2013 to September 2017. Results. During a mean time of 3.6 years between symptom onset and genetic testing, subjects most frequently showed epileptic encephalopathy (40%), focal epilepsy (33%), and generalized epilepsy (18%). In 16 patients (18% of the study population), "pathogenic" or "likely pathogenic" results according to ACMG criteria were found. Ten of the 16 patients (63%) experienced changes in clinical management regarding their medication and avoidance of further diagnostic evaluation, that is, presurgical evaluation. Conclusion. NGS epilepsy panels contribute to the diagnosis of pediatric epilepsy patients and may change their clinical management with regard to both preventing unnecessary and potentially harmful diagnostic procedures and management. Thus, the present data support the early implementation in order to adopt clinical management in selected cases and prevent further invasive investigations. Given the relatively small sample size and heterogeneous panels a larger prospective study with more homogeneous panels would be helpful to further determine the impact of NGS on clinical decision making.

Keywords: clinical decision making; epilepsy; gene panel; next-generation sequencing (NGS); seizure.

 

Find the publication here: https://pubmed.ncbi.nlm.nih.gov/31554424/

Utility of genetic testing for therapeutic decision-making in adults with epilepsy

 

Objective: Genetic testing has become a routine part of the diagnostic workup in children with early onset epilepsies. In the present study, we sought to investigate a cohort of adult patients with epilepsy, to determinate the diagnostic yield and explore the gain of personalized treatment approaches in adult patients.

 

Methods: Two hundred patients (age span = 18-80 years) referred for diagnostic gene panel testing at the Danish Epilepsy Center were included. The vast majority (91%) suffered from comorbid intellectual disability. The medical records of genetically diagnosed patients were mined for data on epilepsy syndrome, cognition, treatment changes, and seizure outcome following the genetic diagnosis.

 

Results: We found a genetic diagnosis in 46 of 200 (23%) patients. SCN1A, KCNT1, and STXBP1 accounted for the greatest number of positive findings (48%). More rare genetic findings included SLC2A1, ATP6A1V, HNRNPU, MEF2C, and IRF2BPL. Gene-specific treatment changes were initiated in 11 of 46 (17%) patients (one with SLC2A1, 10 with SCN1A) following the genetic diagnosis. Ten patients improved, with seizure reduction and/or increased alertness and general well-being.

 

Significance: With this study, we show that routine diagnostic testing is highly relevant in adults with epilepsy. The diagnostic yield is similar to previously reported pediatric cohorts, and the genetic findings can be useful for therapeutic decision-making, which may lead to better seizure control, ultimately improving quality of life.

 

Keywords: NGS; adults; gene panel; genetic testing.

 

Find the publication here: https://pubmed.ncbi.nlm.nih.gov/32427350/